
Weeks 6

8088/8086 Microprocessor 
Programming 



2

Shift

Target register or memoryC

0
SHL

equivalent
C

SAL 0

C

0SHR

C

SAR

Sign Bit



3

Examples

Examples SHL AX,1
SAL DATA1, CL   ; shift count is a modulo-32 count

Ex. ; Multiply AX by 10
SHL AX, 1
MOV BX, AX
MOV CL,2
SHL AX,CL
ADD AX, BX

Ex. What are the results of SAR CL, 1 if CL initially contains B6H?

Ex. What are the results of SHL AL, CL if AL contains 75H 
and CL contains 3?



4

Rotate

Target register or memoryC

RCL

C

C

C

ROL

RCR

ROR

What is the result of ROL byte ptr [SI], 1 if this memory location 3C020 
contains 41H?Ex. 
What is the result of ROL word  ptr [SI], 8 if this memory location 3C020 
contains 4125H?



5

Example

Write a program that counts the number of 1’s in a 
byte and writes it into BL

DATA1  DB 97 ; 61h
SUB     BL,BL ;clear BL to keep the number of 1s
MOV     DL,8 ;rotate total of 8 times
MOV     AL,DATA1

AGAIN:  ROL     AL,1 ;rotate it once
JNC     NEXT ;check for 1
INC     BL ;if CF=1 then add one to count

NEXT:    DEC     DL ;go through this 8 times
JNZ     AGAIN ;if not finished go back
NOP



6

BCD and ASCII Numbers

• BCD (Binary Coded Decimal)
– Unpacked BCD: One byte per digit
– Packed BCD: 4 bits per digit (more efficient in storing data)

• ASCII to unpacked BCD conversion
– Keyboards, printers, and monitors all use ASCII.
– Digits 0 to 9 are represented by ASCII codes 30 – 39.

• Example. Write an 8086 program that displays the packed BCD 
number in register AL on the system video monitor
– The first number to be displayed should be the MS Nibble
– It is found by masking the LS Nibble and then rotating the MS Nibble 

into the LSD position
– The result is then converted to ASCII by adding 30h
– The BIOS video service is then called to display this result.



7

ASCII Numbers Example

MOV BL,AL; save
AND AL,F0H
MOV CL,4
ROR AL,CL
ADD AL,30H
MOV AH,0EH
INT 10H ;display single character

MOV AL,BL; use again
AND AL,0FH
ADD AL,30H
INT 10H
INT 20H             ; RETURN TO DOS

C



8

Example

• Write an 8086 program that adds two packed BCD 
numbers input from the keyboard and computes and 
displays the result on the system video monitor

• Data should be in the form 64+89= The answer 153 
should appear in the next line.

# ? 6 4 + 8 9 = 

0            1            2              3              4 5            6            7           



9

Example Continued

Mov dx, offset bufferaddress
Mov ah,0a
Mov si,dx
Mov byte ptr [si], 6
Int 21 
Mov ah,0eh
Mov al,0ah
Int 10                               
; BIOS service 0e line feed  position cursor

Mov cl,4
Rol byte ptr [si+3],cl
Rol byte ptr [si+6],cl
Ror word ptr [si+5], cl
Ror word ptr [si+2], cl

Mov al, [si+3]
Add al, [si+6]
Daa
Mov bh,al
Jnc display
Mov al,1
Call display
Mov al,bh
Call display
Int 20

sub byte ptr[si+2], 30h
sub byte ptr[si+3], 30h
sub byte ptr[si+5], 30h
sub byte ptr[si+6], 30h

6 ? 6 4 + 8 9 = 

0           1          2          3          4           5 6          7     



10

Flag Control Instructions 

SF     ZF            AF           PF         CF

• LAHF Load AH from flags  (AH) ← (Flags)
• SAHF Store AH into flags  (Flags)  ← (AH)  

– Flags affected: SF, ZF, AF, PF, CF
• CLC Clear Carry Flag  (CF) ← 0
• STC Set Carry Flag  (CF) ← 1
• CLI Clear Interrupt Flag (IF) ← 0
• STI Set interrupt flag (IF) ← 1
• Example  (try with debug)

LAHF
MOV AX,0000
ADD AX,00
SAHF
– Check the flag changes!

Bulk manipulation
of the flags

Individual 
manipulation of 

the flags



11

Compare

Unsigned Comparison

Comp
Operands

CF ZF

Dest > 
source

0 0

Dest = 
source

0 1

Dest < 
source

1 0

Signed Comparison

SF<>OF0Dest < 
source

x1Dest = 
source

SF=OF0Dest > 
source

SF,OFZFComp
Operands



12

Compare Example

DATA1 DW 235Fh
…

MOV AX, CCCCH
CMP AX, DATA1
JNC OVER
SUB AX,AX
OVER: INC DATA1 

CCCC – 235F = A96D => Z=0, CF=0 => 
CCCC > DATA1



13

Compare (CMP)

For ex: CMP CL,BL ; CL-BL; no modification on neither operands

Write a program to find the highest among 5 grades and write it in DL

DATA DB        51, 44, 99, 88, 80 ;13h,2ch,63h,58h,50h
MOV     CX,5 ;set up loop counter
MOV     BX, OFFSET DATA  ;BX points to GRADE data
SUB     AL,AL ;AL holds highest grade found so far

AGAIN: CMP     AL,[BX] ;compare next grade to highest
JA      NEXT ;jump if AL still highest
MOV     AL,[BX] ;else AL holds new highest

NEXT: INC     BX ;point to next grade
LOOP AGAIN ;continue search
MOV  DL, AL 



14

Jump Instructions

• Unconditional vs
conditional jump



15

Conditional Jump

Mnemonic Description Flags/Registers

JZ Jump if ZERO ZF = 1

JE Jump if EQUAL ZF = 1

JNZ Jump if NOT ZERO ZF = 0

JNE Jump if NOT EQUAL ZF = 0

JC Jump if CARRY CF = 1

JNC Jump if NO CARRY CF = 0

JCXZ Jump if CX = 0 CX = 0

JECXZ Jump if ECX = 0 ECX = 0

These flags are based on general comparison



16

Conditonal Jump based on flags

Mnemonic Description Flags/Registers
JS JUMP IF SIGN (NEGATIVE) SF = 1

JP Jump if PARITY EVEN PF = 1

JNP Jump if PARITY ODD PF = 0

JNS JUMP IF NOT SIGN (POSITIVE) SF = 0

JO JUMP IF OVERFLOW OF = 1

JNO JUMP IF NO OVERFLOW OF = 0



17

Jump Based on Unsigned Comparison

Mnemonic Description Flags/Registers

JA Jump if above op1>op2 CF = 0 and ZF = 0

JNBE Jump if not below or equal 
op1 not <= op2

CF = 0 and ZF = 0

JAE Jump if above or equal 
op1>=op2

CF = 0

JNB Jump if not below 
op1 not <opp2

CF = 0

JB Jump if below  op1<op2 CF = 1

JNAE Jump if not above nor equal
op1< op2

CF = 1

JBE Jump if below or equal
op1 <= op2

CF = 1 or ZF = 1

JNA Jump if not above
op1 <= op2

CF = 1 or ZF = 1

These flags are based on unsigned comparison



18

Jump Based on Signed Comparison
These flags are based on signed comparison

Mnemonic Description Flags/Registers
JG Jump if GREATER op1>op2 SF = OF AND ZF = 0

JNLE Jump if not LESS THAN or equal  op1>op2 SF = OF AND ZF = 0
JGE Jump if GREATER THAN or equal op1>=op2 SF = OF

JNL Jump if not LESS THAN   op1>=op2 SF = OF

JL Jump if LESS THAN op1<op2 SF <> OF
JNGE Jump if not GREATER THAN nor equal

op1<op2
SF <> OF

JLE Jump if LESS THAN or equal op1 <= op2 ZF = 1 OR SF <> OF

JNG Jump if NOT GREATER THAN  op1 <= op2 ZF = 1 OR SF <> OF



19

Control Transfer Instructions (conditional)

• It is often necessary to transfer the program 
execution.
– Short

• A special form of the direct jump: “short jump”
• All conditional jumps are short jumps
• Used whenever target address is in range +127 or –128 (single 

byte)
• Instead of specifying the address a relative offset is used.



20

Short Jumps

•Conditional Jump is a two byte instruction.

•In a jump backward the second byte is the 2’s complement of the 
displacement value.

•To calculate the target the second byte is added to the IP of the instruction 
after the jump.

Ex:

000D ADD AL,[BX]

000F INC BX

0010 DEC CX

0011 JNZ FA

0013

Short Jump 0013 + FA (-6)

= 0D



21

.model small

.stack 100h

.data
org 0010
message1 db "You now have a small letter 
entered !",0dh,0ah,'$'
org 50
message2 db "You have NON small letters 
",0dh,0ah,'$'
.code

main proc
mov ax,@data
mov ds,ax
mov ah,00h
int 16h
cmp al,61h
jb next
Cmp al,7Ah
ja next
mov ah,09h
mov dx,offset message1
mov ah,09h
int 21h
int 20h
next: mov dx,offset message2
mov ah,09h
int 21h
mov ax,4C00h
int 21h

main endp
end main

SJ ExampleHello2.exe



22

A Simple Example Program finds the sum

• Write a program that adds 5 bytes of data and saves the result. The 
data should be the following numbers: 25,12,15,10,11

.model small

.stack 100h

.data

Data_in DB 25,12,15,10,11

Sum DB ?

.code

main proc far

mov ax, @Data

mov ds,ax

mov cx,05h

mov bx,offset data_in

mov al,0

Again: add al,[bx]

inc bx

dec cx

jnz Again

mov sum,al

mov ah,4Ch

INT 21H

Main endp

end main



23

Example Output



24

Unconditional Jump
Short Jump: jmp short L1 (8 bit)

Near Jump: jmp near ptr Label
If the control is transferred to a memory location within the current 
code segment (intrasegment), it is NEAR. IP is updated and CS 
remains the same

The displacement (16 bit) is added to the IP of the instruction following jump 
instruction. The displacement can be in the range of –32,768 to 32,768.

The target address can be register indirect, or assigned by the label.

Register indirect JMP: the target address is the contents of two memory 
locations pointed at by the register.

Ex: JMP [SI] will replace the IP with the contents of the memory locations 
pointed by DS:DI and DS:DI+1 or JMP [BP + SI + 1000] in SS

Far Jump: If the control is transferred to a memory location outside the 
current segment. Control is passing outside the current segment both CS and IP 
have to be updated to the new values. ex: JMP FAR PTR label = EA 00 10 00 20
jmp far ptr Label     ; this is a jump out of the current segment.



25

Near Jump

Jumps to the specified IP with +/- 32K distance from 
the next instruction following the jmp instruction



26

Far Jump

Jumps to the specified CS:IP



27

XLAT

• Adds the contents of AL to BX and uses the resulting offset to point 
to an entry in an 8 bit translate table. 

• This table contains values that are substituted for the original value 
in AL.

• The byte in the table entry pointed to by BX+AL is moved to AL.

• XLAT [tablename] ; optional because table is assumed at BX

• Table db ‘0123456789ABCDEF’

Mov AL,0A; index value
Mov bx,offset table
Xlat; AL=41h, or ‘A’



28

Subroutines and Subroutine Handling Functions

A subroutine is a special 
segment of a program that can 
be called for execution from 
any point in the program

A RET instruction must be 
included at the end of the 
subroutine to initiate the return 
sequence to the main program 
environment

Examples. Call 1234h
Call BX
Call [BX]

Two calls
•intrasegment
•intersegment



29

Calling a NEAR proc

The CALL instruction and the subroutine it calls are in 
the same segment.

Save the current value of the IP on the stack.

load the subroutine’s offset into IP (nextinst + offset)

Calling Program Subroutine Stack

Main proc sub1 proc
001A: call sub1 0080: mov ax,1
001D: inc ax …
. ret
Main endp sub1 endp

1ffd 1D

1ffe 00

1fff (not used)



30

Calling a FAR proc

The CALL instruction and the subroutine it calls are in 
the “Different” segments.

Save the current value of the CS and IP on the stack.

Then load the subroutine’s CS and offset into IP.

Calling Program               Subroutine Stack
Main proc sub1 proc far

1FCB:001A: call far ptr sub1 4EFA:0080: mov ax,1
1FCB:001F: inc ax ….

… ….
… ret (retf opcode generated)
Main endp sub1 endp 1fff N/A

1ffb 1F

1ffc 00

1ffd CB

1ffe 1F

Opcode 8000   FA4E

I
P

S
E
G



31

Example on Far/Near Procedure Calls

1ff0 08

1ffa 1C

1ffb 05

1ffc 1C

1ffd 50

1ffe 03

1fff X

0350:1C00 Call FarProc
0350:1C05 Call NearProc
0350:1C08 nop



32

Nested Procedure Calls

A subroutine may itself call other subroutines.

Example:
main proc

000A call subr1
000C mov ax,…
…

main endp

subr2  proc
0050 nop

…
call subr3

0060 ret …

subr2 endp

Q: show the 
stack contents 

at 0079?

subr1  proc
0030 nop

…
call subr2

0040 ret …

subr1 endp

subr3  proc
0070 nop

…
0079 nop
007A ret

subr3 endp

Do NOT overlap Procedure Declarations

1fff X

1ff0 60

1ffa 00

1ffb 40

1ffc 00

1ffd 0c

1ffe 00

1fff X



33

Push and Pop Instructions

Push S (16/32 bit or Mem)
(SP) ← (SP) - 2
((SP)) ← (S)

Pop D (16/32 bit or Mem)
(D) ← ((SP))
(SP) ← (SP) + 2



34

Loop and Loop Handling Instructions



35

Loop



36

Nested Loops

MOV CX,A
BACK: …
…
…
…
LOOP BACK

MOV CX,A
OUTER: NOP

MOV CX, 99
INNER: NOP 

…
…
…
LOOP INNER
NOP
LOOP OUTER

MOV CX,A
OUTER: PUSH CX

MOV CX, 99
INNER: NOP 

…
…
…
LOOP INNER
POP CX
LOOP OUTER

Nested Loopssingle Loop

How many 
times will the 
loop execute,

if JCXZ wasn’t 
there

MOV CX,0
DLOOP: JCXZ SKIP ;guarding              
BACK: MUL AX,2H
ADD AX,05H
LOOP BACK
SKIP: INC AX; if CX=0



37

INT

INT operates similar to Call

Processor first pushes the flags

Trace Flag and Interrupt-enable flags are cleared

Next the processor pushes the current CS register onto the stack

Next the IP register is pushed

Example: What is the sequence of events for INT 08? If it generates a CS:IP 
of 0100:0200. The flag is 0081H.

SP-6 00
SP-5 02
SP-4 00
SP-3 01
SP-2 81
SP-1 00

MEMORY / ISR table
1000020
0000021
8000022
0500023

S
E
G

I
P 0580:

0010

SP initial



38

IRET

•IRET must be used for special handling of the stack.

•Must be used at the end of an ISR

SP-6 00
SP-5 02
SP-4 00
SP-3 01
SP-2 81
SP-1 00

Return address + 
flags are loaded

SP initial



39

String Instructions

80x86 is equipped with special instructions to handle string 
operations
String: A series of data words (or bytes) that reside in 
consecutive memory locations
Operations: move, scan, compare

String Instruction: 
Byte transfer, SI or DI increment or decrement by 1
Word transfer, SI or DI increment or decrement by 2
DWord transfer, SI or DI increment or decrement by 4



40

String Instructions - D Flag

The Direction Flag: Selects the auto increment D=0 or 
the auto decrement D=1 operation for the DI and SI registers 
during string operations. D is used only with strings

CLD Clears the D flag /  STD Sets the D flag



41

String Instructions



42

Repeat String REP

Basic string operations must be repeated in order 
to process arrays of data; this is done by inserting a 
repeat prefix.



43

Example. Find and replace

• Write a program that scans the name “Mr.Gohns” and replaces the 
“G” with the letter “J”.
Data1 db  'Mr.Gones','$‘
.code 
mov es,ds
cld ;set auto increment bit D=0
mov di, offset data1
mov cx,09; number of chars to be scanned
mov al,'G'; char to be compared against
repne SCASB; start scan AL =? ES[DI]
jne Over; if Z=0
dec di; Z=1
mov byte ptr[di], 'J'

Over:  mov ah,09
mov dx,offset data1
int 21h; display the resulting String

search.asm

Search.exe



44

Strings into Video Buffer

Clear.exeFill the Video Screen with a value

CLD
MOV AX,0B800H
MOV ES,AX
MOV DI,0
MOV CX,2000H
MOV AL,20h
REP STOSW



45

Example. Display the ROM BIOS Date

• Write an 8086 program that searches the BIOS ROM for its 
creation date and displays that date on the monitor.

• If a date cannot be found display the message “date not found”
• Typically  the BIOS ROM date is stored in the form xx/xx/xx 

beginning at system address F000:FFF5 
• Each character is in ASCII form and the entire string is terminated 

with the null character (00)
• Add a ‘$’ character to the end of the string and make it ready for 

DOS function 09, INT 21  

Date.asm


