Weeks 6

8088/8086 Microprocessor
Programming

Shift

C Target register or memory
\
< < < 0
SHL))
- 3 equivalent
SAL < < — 0
J
C
SHR 0 — >
C
SAR R >

|

Sign Bit

Examples

Examples SHL AX,1
SAL DATAI1, CL : shift countis a modulo-32 count

EX. ; Multiply AX by 10
SHL AX, 1
MOV BX, AX
MOV CL,2
SHL AX,CL
ADD AX, BX

EX. What are the results of SAR CL, 1 if CL initially contains B6H?

EX. What are the results of SHL AL, CL if AL contains 75H
and CL contains 3?

Rotate

RCL

ROL

RCR

ROR

EX.

C Target register or memory

A
A
A

A
A
A

A 4

v
A 4
@)

A 4

A 4
v
@)

What is the result of ROL byte ptr [SI], 1 if this memory location 3C020
contains 41H?

What is the result of ROL word ptr [SI], 8 if this memory location 3C020
contains 4125H?

Example

Write a program that counts the number of 1’s in a
byte and writes it into BL

DATAl1 DB 97 : 61h
SUB BL,BL ;Clear BL to keep the number of 1s
MOV DL,8 ‘rotate total of 8 times
MOV AL,DATA1l
AGAIN: ROL AL, ‘rotate it once
JNC NEXT :check for 1
INC BL :if CF=1 then add one to count
NEXT: DEC DL ;g0 through this 8 times

JNZ AGAIN ;if not finished go back
NOP

A
A

BCD and ASCII Numbers

BCD (Binary Coded Decimal)

Unpacked BCD: One byte per digit
Packed BCD: 4 bits per digit (more efficient in storing data)

ASCII to unpacked BCD conversion

Keyboards, printers, and monitors all use ASCII.
Digits 0 to 9 are represented by ASCII codes 30 — 39.

Example. Write an 8086 program that displays the packed BCD

number in register AL on the system video monitor

The first number to be displayed should be the MS Nibble

It is found by masking the LS Nibble and then rotating the MS Nibble
into the LSD position

The result is then converted to ASCII by adding 30h
The BIOS video service is then called to display this result.

ASCIlI Numbers Example

MOV BL,AL,; save

AND AL,FOH

MOV CL 4

ROR AL,CL

ADD AL,30H

MOV AH,0EH

INT 10H ;display single character

MOV AL,BL; use again

AND AL,0FH

ADD AL,30H

INT 10H

INT 20H ; RETURN TO DOS

v
\ 4

A 4

Example

 Write an 8086 program that adds two packed BCD
numbers input from the keyboard and computes and
displays the result on the system video monitor

 Data should be in the form 64+89= The answer 153
should appear in the next line.

Example Continued

Mov dx, offset bufferaddress

Mov ah,0a

Mov si,dX

Mov byte ptr [si], 6

Int 21

Mov ah,0eh

Mov al,0ah

Int 10

; BIOS service Oe line feed position cursor

sub byte ptr[si+2], 30h
sub byte ptr[si+3], 30h
sub byte ptr[si+5], 30h
sub byte ptr[si+6], 30h

6 ? 6 4 + 8 9 =

1 2 3 4 3) 6 7

Mov cl 4

Rol byte ptr [si+3],cl
Rol byte ptr [si+6],cl
Ror word ptr [si+5], cl
Ror word ptr [si+2], cl

Mov al, [si+3]
Add al, [si+6]
Daa

Mov bh,al
Jnc display
Mov al,1

Call display
Mov al,bh
Call display
Int 20

Flag Control Instructions

SF | ZF AF PF| |CF
LAHF Load AH from flags (AH) <« (Flags) Bulk manipulation
SAHF Store AH into flags (Flags) <« (AH) of the flags

— Flags affected: SF, ZF, AF, PF, CF
CLC Clear Carry Flag (CF) <~ 0
STC Set Carry Flag (CF) <1 Individual
CLI Clear Interrupt Flag (IF) <~ 0 = manipulation of
STI Set interrupt flag (IF) « 1 the flags

Example (try with debug)
LAHF
MOV AX,0000
ADD AX,00
SAHF
— Check the flag changes!

10

Compare

Mnemonic | Meaning | Format Operation Flags Affected

CMP Compare | CMP D,S | (D)= (S) is used in CF, AF, OF, PF, SF, ZF
setting or resetting

the flags
(@)
Unsigned Comparison Signed Comparison
Comp CF 7F Destination Source COmp ZF SF,OF
Operands Register Register Operands
Dest > 0 0 Register Memory Dest > 0 | SF=OF
Memory Register source
el Register Immediate -
Dest = 0 1 Memory Immediate Dest = 1 X
source Accumulator | Immediate source
Dest < 1 0 Dest < 0 |SF<>OF
b
source (bl source

11

Compare Example

DATAL DW 235Fh

MOV AX, CCCCH
CMP AX, DATA1

JNC OVER
SUB AX,AX
OVER: INC DATAL1

12

Compare (CMP)

For ex: CMP CL,BL ; CL-BL; no modification on neither operands

Write a program to find the highest among 5 grades and write it in DL

DATA DB 51, 44, 99, 88, 80 ;13h,2ch,63h,58h,50h

MOV CX,5 ;set up loop counter

MOV BX, OFFSET DATA ;BX points to GRADE data

SUB ALAL ;AL holds highest grade found so far
AGAIN: CMP AL,[BX] ;compare next grade to highest

JA NEXT ;jump if AL still highest

MOV AL,[BX] ;else AL holds new highest
NEXT: INC BX ;point to next grade

LOOP AGAIN ;continue search

MOV DL, AL

13

Jump Instructions

Part 1
« Unconditional vs J IMP AA [Unconditionsl jump
conditional jump ol

| Locations skipped due
1o jump

? AA XXXXXX fe— Nextinstruction

executed

Par II1

(a}

Part [

Jec AA g Conditional jump
instruction

- XXXXXX |e— Nextinstruction executed
i condition not met

—— Locations skipped
if jump taken

Part [I =

MNext instruction
=AM XXXNHN e—— executed if
condition met

Part 111

{b}

Conditional Jump

These flags are based on general comparison

Mnemonic

Description

Flags/Registers

JNZ Jump if NOT ZERO ZF=0
JNE Jump if NOT EQUAL ZF=0
JC Jump if CARRY CF=1
JNC Jump if NO CARRY CF=0
JCXZ Jump ifCX =0 CX=0
JECXZ Jump ifECX =0 ECX=0

15

Conditonal Jump based on flags

Mnemonic Description Flags/Registers
JS JUMP IF SIGN (NEGATIVE) SF=1
JNS JUMP IF NOT SIGN (POSITIVE) SF=0
JP Jump if PARITY EVEN PF=1
JNP Jump if PARITY ODD PF=0
JO JUMP IF OVERFLOW OF=1
JNO JUMP IF NO OVERFLOW OF=0

16

Jump Based on Unsignhed Comparison

These flags are based on unsigned comparison

Mnemonic Description Flags/Registers
JA Jump if above opl>0p2 CF=0andZF =0
JAE Jump if above or equal CF=0

opl>=op2
JB Jump if below opl<op2 CF=1
JBE Jump if below or equal CF=1orZF=1

opl <= op2

1/

Jump Based on Signed Comparison

These flags are based on signed comparison

Mnemonic Description Flags/Registers

JG Jump if GREATER opl1>o0p2 SF=0OFAND ZF =0
JGE Jump if GREATER THAN or equal op1>=0p2 SF = OF

JL Jump if LESS THAN opl<op?2 SF <> OF

JLE Jump if LESS THAN or equal opl <=o0p2 ZF =1 0OR SF <> OF

18

Control Transfer Instructions (conditional)

|t Is often necessary to transfer the program
execution.
— Short

» A special form of the direct jump: “short jump”
o All conditional jumps are short jumps

« Used whenever target address is in range +127 or —128 (single
byte)

 Instead of specifying the address a relative offset is used.

19

Short Jumps

«Conditional Jump is a two byte instruction.

*In a jJump backward the second byte is the 2’s complement of the
displacement value.

*To calculate the target the second byte is added to the IP of the instruction
after the jump.

EX:
. 000D ADD AL,[BX]—__
O00F INC BX
—— Short Jump 0013 + FA (-6)
0010 DEC CX oo
— 0011 JNZ FA —

0013

=]
weee 53 Example

= .model
= .stack 100h
: .data

: org 0010

rﬁ: . NNS Pramnl

L

a ¢ry Created with Hyperanap-Dia =
To avoid thiz stamp, buy a license at
hitp: femnnie hypenonics.com

- q
Ci\ecd Trne

C:\Irvinesdebug helloZ.exe
-y @ 25
18EF 0000
16EF:
16EF:
16EF:
16EF:
16EF:

nl'llh

16EF:
1REF:O00F 77
16EF: 0011 E4UL
16EF: Hnl. 20
16EF: 0015
lEEF.vv DZ1
16EF: 0014 CD2

16EF:001C BA3AQ0
16EF: 001F E409
16EF: 0021 021
16EF: 0023 BROD4C

[S

5 Al

A 400

small

: messagel db "You now have a small letter
» entered !
= org 50

,0dh,0ah, "$"

message2 db ""You have NON small letters
',0dh,0ah, "$"
.code
main proc
mov ax,@data
mov ds,ax
mov ah,00h
int 16h

I Ib_next |

Cmp al,7Ah
I ja next |
mov ah,09h
mov dx,offset messagel
mov ah,09h
int 21h
int 20h
next: mov dx,offset message2
mov ah,09h
int 21h
mov ax,4C00h
int 21h
main endp
end main

A Simple Example Program finds the sum

 Write a program that adds 5 bytes of data and saves the result. The
data should be the following numbers: 25,12,15,10,11

-model small
.stack 100h
.data
Data_inDB 25,12,15,10,11
Sum DB ?
.code
main proc far
mov ax, @Data
mov ds,ax
mov cx,05h
mov bx,offset data In

mov al,O

Again: add al, [bx]

4

A

INC bx

dec cx

- jnz Again
mov sum,al
mov ah,4Ch
INT 21H

Main endp

end main

22

Example Output

o Run Data Options Calls Windows Help
l—[3}— sourcel CS:IP EX1l.asm B—17
.mode| sma || AX

.stack 100h || BX

.data | CX
Data_in DB 25,12,15,10,11 | DX

Sum DB 7 i SP

.code H| BP

main proc far | SI

mov ax, @Data | DI

1DSE 0000 B85C1D MOV AX, 1D5C H| DS
0: mov ds,ax 4| ES
1D5B:0003 8ED8 MOV DS, AX I}| SS
. (1.2 IP
—[5] memoryl b Ox1D5C:0x0eee FL
1D5C: 0000 19 0C OF| Iu-o%.{L=! |90
1D5C:000D | OA OB BoiiNBO84e. ... | [NV UP
1D5C:001A 00 43 56 01 Q0 00 Q00 00 00 00 ..®.CVe ZR NA

D
L]

i mmnimimimmimimimmnimin-—z

-
Process 0Ox1D4B terminated normally (2)
>

<F8=Trace> <Fl0=Step> <F5=Go> <F3=51 Fmt> <Sn+F3=M1 Fmt>

Unconditional Jump

s*Short Jump: jmp short L1 (8 bit)

“*Near Jump: jmp near ptr Label
If the control is transferred to a memory location within the current
code segment (intrasegment), it is NEAR. IP is updated and CS
remains the same

» The displacement (16 bit) is added to the IP of the instruction following jump
instruction. The displacement can be in the range of —-32,768 to 32,768.

» The target address can be register indirect, or assigned by the label.

»Register indirect JMP: the target address is the contents of two memory
locations pointed at by the register.

»EXx: JMP [SI] will replace the IP with the contents of the memory locations
pointed by DS:DI and DS:DI+1 or JMP [BP + Sl + 1000] in SS

ssFar Jump: If the control is transferred to a memory location outside the
current segment. Control is passing outside the current segment both CS and IP
have to be updated to the new values. ex: IMP FAR PTR label = EA 00 10 00 20
jmp far ptr Label ; this is a jJump out of the current segment.

Near Jump

0B20:1000 E9FDO1 IMP 1200
0B20:1003 200B AND [BP+DI],CL

Jumps to the specified IP with +/- 32K distance from
the next instruction following the jmp instruction

25

jmp 3000:1200

DB20:1000 EA00120030 JMP 3000:1200
OB20:1005 FF750B PUSH [DI+O0B]

Jumps to the specified CS:IP

26

XLAT

* Adds the contents of AL to BX and uses the resulting offset to point
to an entry in an 8 bit translate table.

* This table contains values that are substituted for the original value
iIn AL.

 The byte in the table entry pointed to by BX+AL is moved to AL.
« XLAT [tablename] ; optional because table is assumed at BX
 Table db ‘0123456789ABCDEF’

Mov AL,0A; index value

Mov bx,offset table
Xlat; AL=41h, or ‘A’

27

Subroutines and Subroutine Handling Functions

Main program

v'A subroutine is a special

segment of a program that can :
be called for execution from Call subroutine A Subeoutine A
any point in the program i Tt Penon

v'A RET instruction must be Cot sbrovios & :
included at the end of the e ==
subroutine to Iinitiate the return 3
sequence to the main program
. Mnemonic Meaning Format Operation Flags Affected
environment CALL | Subroutine call | CALL operand |Execution continues from the] None
address of the subroutine
Tntormstion et 10
Examples. Call 1234h rogram much = 1P and CS
are saved on the stack,
Call BX o
Call [BX] o
Near-proc
Far-proc
Two calls e
Memptr32

sintrasegment
sintersegment

(e}

Figure 6-20 (a) Subroutine concept (b) Subroutine call instruction.
(c) Allowed operands. :

Calling a NEAR proc

Calling Program Subroutine Stack
Main proc subl proc

001A: call subl 0080: mov ax,1

001D: Inc ax 1ffd | 1D

. ret 1ffe | 00
Main endp subl endp 1fff | (not used)

29

Calling a FAR proc

Calling Program Subroutine Stack
Mainproc ... subl proc far sl il |
1FCB:001A:call far ptr subl ~—4EFA:0080: mov ax,1 | 1ffc |00 P
1FCB:001F: incax— 1ffd |CB |
e |1F | o
- ret (retf opcode generated) P P
Main endp subl endp

| Opcode 8000 FAA4E 30

Example on Far/Near Procedure Calls

0350:1C00 Call FarProc
0350:1CO05 Call NearProc
0350:1C08 nop

1ff0

08

|

1ffa

1C

1ffb

05

1ffc

1C

<

1ffd

50

1ffe

03

1fff

X

31

Nested Procedure Calls

A subroutine may itself call other subroutines.

Example: Subr2. proc QShOWthe
main proc 0050 nop : stack contents
000A call subrl o JLO0TS
000C mov ax,... call subr3
0060 ret... 1ff0 | 60
main endp subr2 endp 1ffa | 00
subrl proc subr3 proc lffb | 40
0030 nop 0070 nop 1ffc | 00
call subr2 0079 nop
0040 ret ... 007A ret lfte |00
1 fff X
subrl endp subr3 endp I BRI

Do NOT overlap Procedure Declarations

Push and Pop Instructions

To save registers
and parameters
on the stack

Main body of the
subroutine

To restore registers
and parameters
from the stack

Return to main

program

{

PUSH XX
PUSH YY
PUSH ZZ

-

POP 2Z
POP YY
POP XX
RET

Push S (16/32 bit or Mem)

(SP) « (SP) - 2
(SP)) < (S)

Pop D (16/32 bit or Mem)
(D) < ((SP))
(SP) « (SP) + 2

33

Loop and Loop Handling Instructions

Operation

Mnemonic B ﬁ:lniu Farmat
LOOP Loop LOOP Short-label {CX) = {CK1 =1
i I Jump i initiated to location delined by
' shart-lubel if (CX) # 0; otherwine,
_ cntcule mexl sequeniial instruion
LOOPE/LOOPLZ | Loop while equal/ LOOFE/LOOPFE Short-label IO} = (CX) = | :
loop while rero ' Jamyp b location defined by short-Tulel !
[WICX)# 0 and (ZF) = |; otherwise,
execule nexl sequentlad Instruction
LOOPNE/ Loop while not equal{ | LOOPNE/LOOPNE Short-label | (CX) = (CX) = |
LOOPNZ lsap while not eno

Jump 1o location delined by short-lahel
W (CX) o 0 and (ZF) = 0; otherwise,
execule nex! sequential it fucton

Figure 6-28 Loop instructions.

34

Loop

MOV CX,COUNT
NEXT: -

E
L]

Load count for the number of repeats

= Body of routine that is repeated

LOOP NEXT Loop back to label NEXT if count not zero
fa)

MOV AX.DATASEGADDR
MOV DS.AX
MOV SLBLK1ADDR
MOV DLBLK2ADDR
MOV CX.N

NXTPT: MOV AH,[S1]
MOV [DIL.AH
INC 3|
INC D1
LOOP NXTPT

HLT

(b)

Nested Loops

single Loop Nested Loops
MOV CX,A
MOV CX.A OUTER: PUSHCX «
BACK: .. < MOV CX, 99
INNER: NOP <
LOOP BACK
LOOP INNER ——
POP CX
LOOP OUTER

MOV CX,0

DLOOP: JCXZ SKIP ;guarding «
BACK: MUL AX,2H

ADD AX,05H

LOOP BACK

SKIP: INC AX; if CX=0

How many
times will the
loop execute,

if JCXZ wasn’t

INT

INT operates similar to Call
ssProcessor first pushes the flags
s Trace Flag and Interrupt-enable flags are cleared
“*Next the processor pushes the current CS register onto the stack

“*Next the IP register is pushed

Example: What is the sequence of events for INT 08? If it generates a CS:IP
of 0100:0200. The flag is 0081H.

SP-6 00 MEMORY / ISR table

SP-5 02 00020 10 -

SP-4 00 00021 00 P 0580:
SP-3 01 00022 80 S 0010
SP-2 81 00023 05 } c

SP-1 00

SP initial

IRET

|RET must be used for special handling of the stack.

*Must be used at the end of an ISR
SP-6 00 A
i = Return address +
u

i > > flags are loaded
SP-3 01

SP-2 81

SP-1 00)

SP initial

String Instructions

80x86 is equipped with special instructions to handle string
operations

String: A series of data words (or bytes) that reside in
consecutive memory locations

Operations: move, scan, compare

String Instruction:

Byte transfer, SI or DI increment or decrement by 1
Word transfer, Sl or DI increment or decrement by 2
DWord transfer, Sl or DI increment or decrement by 4

39

String Instructions - D Flag

The Direction Flag: Selects the auto increment D=0 or

the auto decrement D=1 operation for the DI and Sl registers

during string operations. D is used only with strings

Mnemonic | Meaning Format Operation | Flags Affected
CLD Clear DF CLD (DF)+0 DF
STD Set DF STD (DF) + | DF

CLD - Clearsthe D flag/ STD - Sets the D flag

40

String Instructions

Mnemaonic Meaning Formal Operation Flags Affected
MOVS Muove string MOVSB/MOVSW | ({ES)0 + (DI)) = ((DS)0 + (51)) None
(S} +— (51} = 1 o 2
(DI) + (DI} 1 o1 2
CMPS Compare siring | CMPSB/CMPSW Set flags as per CF, PF, AF, ZF, 5F, OF
((D3)0 + (51)) — ((ES)0 + (DI))
(SI) +— (S1} % 1 or 2
(DI} +— (DI} = 1 o 2
SCAS Scan siring SCASBISCASW Set Mags as per CF, PF, AF
T T T T . PF, AF, ZF, 5F, OF
(DI} « (DI} = 1 or 2
LODS Load string LODSB/LODSW | (AL or AX) + ((D5)0 + (51}) None
(51) —(S1) = 1 or 2
5TOS Store siring STOSDISTOSW ((ES)0 + (DI)) + (AL or AX) * lor2 | Mone
(D1) o (D) = 1 e 2
MOV AX,DATASEGADDR
MOV DS,AX
MOV ES,AX
MOV SILLBLK1ADDR
MOV DI.BLK2ADDR
MOV CX.N
CLD
NXTPT: MovssB
LOOP NXTPT
HLT

41

Repeat String REP

Basic string operations must be repeated in order
to process arrays of data; this is done by inserting a

repeat prefix.

Prefix Used with: Meaning
REP MOVS Repceat while not end of string
STOS CX#0
REPE/REPZ CMPS Repecat while not end of string
SCAS and strings arc equal
CX+#0and ZF = |
REPNE/REPNZ CMPS Repeat while not end of string
SCAS and strings are not equal
CX#0and ZF =0

Figure 6-36 Prefixes for use with
the basic string operations.

42

Example. Find and replace

* Write a program that scans the name “Mr.Gohns” and replaces the
“G” with the letter “J”. search.asm

Datal db “"Mr.Gones", "$“
_code

mov es,ds
cld ;set auto iIncrement bit D=0
mov di, offset datal
mov cX,09; number of chars to be scanned
mov al,"G"; char to be compared against
repne SCASB; start scan AL =7 ES[DI]
jne Over; 1t Z=0
dec di; Z=1
mov byte ptr[di], "J°
Over: mov ah,09
mov dx,offset datal .
int 21h; display the resulting String

Search.exe

43

Strings into Video Buffer

Fill the VVideo Screen with a value

'MOV AX,OBSOOH
MOV ES,AX
MOV DI,0

MOV CX,2000H
'MOV AL, 20h

44

Example. Display the ROM BIOS Date

« Write an 8086 program that searches the BIOS ROM for its
creation date and displays that date on the monitor.

« |If a date cannot be found display the message “date not found”

 Typically the BIOS ROM date is stored in the form xx/xx/xx
beginning at system address FOOO:FFF5

 Each character is in ASCII form and the entire string is terminated
with the null character (00)

 Add a‘$ character to the end of the string and make it ready for
DOS function 09, INT 21

45

